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Fractal models for diffusion controlled aggregation 

T Vicsek 
Institute for Technical Physics of HAS, Budapest, Pf 76, H-1325, Hungary 

Received 8 September 1983 

Abstract. A two-dimensional fractal model is constructed for diffusion controlled deposi- 
tion on a surface. The fractal geometry of the deposit and the power law behaviour of 
the quantities characterising the non-equilibrium cluster size distribution are shown to be 
consequences of the competition generally present in a nonlinear growth process. A 
qualitative agreement with previous numerical results is found and the scaling laws for the 
critical exponents of the problem are shown to be satisfied exactly. 

The study of the geometry and statistics of clusters in an equilibrium system belongs 
to the standard approaches of statistical physics. Properties of correlated and random 
equilibrium clusters have been reviewed in Muller-Krumbhaar (1979), Essam (1980), 
Stauffer (1979) and Stanley et a1 (1982). 

Recently interest has grown in the investigation of clusters formed as a result of 
an irreversible kinetic process. These non-equilibrium clusters appear in a wide variety 
of problems such as coagulation of smoke particles (Witten and Sander 1981), the 
early stage of nucleation (Klein 1981), sol-gel transition (Herrmann et a1 1982) and 
red blood cell aggregation (Wiegel and Perelson 1982). A characteristic feature of 
these irreversible processes is a nonlinear competition between the neighbouring parts 
of a large growing cluster or among clusters growing simultaneously in the system. 
Here the term nonlinear competition corresponds to a process in which at first two or 
several clusters (or branches of a cluster) grow relatively independently, but at a later 
stage all but one of these clusters stop growing, being almost entirely suppressed by 
the largest cluster (branch). This usually happens when the range of interaction or 
screening length of the clusters (branches) becomes comparable to the distance between 
two clusters (branches). The aim of this letter is to show how fractal geometry and 
scaling properties are generated by competitive growth processes of this kind. 

Recently a growth model called diffusion controlled aggregation was introduced 
by Witten and Sander (1981, 1983) in which an unstable growth of branches within 
one large cluster was observed. The rules of this model are quite simple. The process 
is started with an initial seed particle at a lattice point. Another particle is allowed to 
walk at random (i.e. diffuse) from far away until it arrives at one of the lattice sites 
adjacent to the occupied site. Then it is stopped; another particle is launched and 
halted when adjacent to the two occupied sites, and so forth. 

In their Monte Carlo simulations Witten and Sander (1981, 1983) found that in 
large clusters formed in this way the density correlations decay algebraically. In the 
further computer experiments of Meakin (1983a) the fractal dimension (Mandelbrot 
1977) of such aggregates was also determined in dimensions d = 2  to 6.  Results of 
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the recent mean field (Muthukumar 1983) and renormalisation group calculations 
(Gould er a1 1983) agree well with the simulations. 

In order to have a qualitative insight into the events going on during the diffusion 
controlled deposition we build up a regular model reflecting the two main features of 
the process: growth and freezing in (stopping further growth) of the clusters or branches 
of a cluster. In addition, a regular model has the advantage that we can obtain explicit 
expressions for the quantities of interest. 

For our purposes a two-dimensional version of the original model is more suitable, 
in which instead of having one seed particle we have at the beginning a whole straight 
line of occupied sites (seed particles) playing the role of a surface (figure 1). This 
model has very recently been investigated by Meakin (1983b), who determined the 
root-mean-square thickness exponent of the deposit, and was independently proposed 
by RBcz and Vicsek (1983) in order to study non-equilibrium cluster distribution. The 
clusters are generated in this process in a natural way. A particle sticking to the surface 
forms a basis for a new, tree-like cluster growing as more particles are launched. 
During the growth process two such clusters are very unlikely to join; nevertheless, 
if it happens, they are regarded as one new cluster. 

Figure 1. Clusters generated in a small scale Monte Carlo simulation. As the number of 
particles M added by a diffusion controlled aggregation process is increased, the relatively 
small clusters stop growing since they become suppressed by the neighbouring larger 
clusters. In this figure M denotes the number of particles in the deposit normalised by 
the length of the substrate. 

In figure 1, configurations of a small scale Monte Carlo simulation of this model 
are shown for four increasing values of the number of particles added by the diffusion 
controlled rule. This diagram demonstrates the growth and the following freezing in 
of the small clusters during the process. Now we try to imitate this kind of aggregation 
with the help of a regular construction. Let us imagine that the first particles fill every 
third site nearest to the surface (figure 2), each of them forming a basis for a new 
tree. If one of these sites starts growing it suppresses the growth of the nearest 
neighbouring sites. Therefore, we allow the growth of every third site in the first row. 
These clusters continue growing until the screening length 1, of the trees (clusters) 
becomes comparable to the distance between them. As 1, and the height of the clusters 
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Figure 2. Subsequent steps made in the process of constructing a regular model for the 
diffusion controlled deposition on a one-dimensional surface. 

h are of the same order, we suppose that when h becomes equal to half of the distance 
between the trees, a new stage of the growth process is started. Every third cluster 
continues growing and the neighbours will be suppressed. (Branches of the clusters 
grow according to the same principle.) As a result a system of ramified clusters, some 
of which grow infinitely large, is obtained. 

The most striking feature of the configuration produced in this way is that it has 
essentially the same structure as one of the simplest fractals, shown in figure 3. In 
both fractals the basic cell has the shape of a square divided into nine equal parts, but 
only five out of these nine parts are retained when in the process of generating the 
fractal further steps are made. The only difference is that in the first case (figure 2) 
the fractal is obtained in the L + CO limit (where L is the linear size of the regular 
cluster measured in the lattice units), while in the case of the division of a square 
(figure 3) the E -P 0 limit must be taken (where E denotes the linear size of the squares 
after subsequent divisions). In other words, a fractal imitating the diffusion controlled 
aggregation process is produced by repeating firstly the original cell (consisting of five 
particles) according to the configuration of particles within this cell, then repeating 
this new cell according to the configuration of the original unit cell and doing so ad 
infinitum. This process results in a fractal corresponding to an aggregate grown from 
one seed particle. Properties of the deposits can be derived from this model. This is 
discussed later in the paper. 

k=O 1 

x 
2 3 

Figure 3. Successive stages of generating a fractal having essentially the same geometry 
as the regular model shown in figure 2. 
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Now it is possible to calculate the fractal dimension D of our regular aggregate. 
D is defined by the expression 

D = lim (In M(L)/ ln  L) ,  (1) 
L-m 

where M ( L )  is the number of particles in a model aggregate of linear size equal to L. 
If the size of the unit cell of a fractal is denoted by 1 and the number of sites in this 
cell is equal to m, then, as the subsequent stages are generated, L and M ( L )  increase 
according to L =  l k  and M ( L ) = m k ,  where k is the number of steps made in the 
process of producing the fractal. 

Substitution into (1) gives 

D =In m/ln 1 (2) 

and for the fractal dimension of our model we get D = In 5/ln 3 = 1.465..  . . The 
corresponding Monte Carlo result D -  1.67 (Meakin 1983a) is somewhat higher. 
However, better agreement can be achieved by choosing larger, less simplified unit 
cells. Fractals generated using the unit cells shown in figure 4 have fractal dimension 
D = 1.561 . . . , D = 1.654. . . and D = 1.672. . . respectively, and have an aggregate 
like structure at the same time. 

Q b C 

Figure 4. Unit cells defining aggregate-like regular fractals of dimension ( a )  D = 1.561 . . . , 
( b )  D=1.654 . . . ,  (c )  D=1.672 . . . .  

The most important feature of the fractal model described above (figure 2) is that 
it is possible to get explicit expressions for the quantities characterising the statistics 
of clusters defined in the deposition model. In order to treat the statistics of clusters 
on a surface we define n, as the number of clusters consisting of s sites divided by the 
length of the substrate and the quantity S = X, s 2 n , / Z ,  sn, which we shall call the mean 
cluster size. These quantities are analogous to those used in percolation theory for 
the description of the statistics of random equilibrium clusters. There are only a few 
works on non-equilibrium cluster distribution. Binder and Stauffer (1976) in an Ising 
system and Jan et a1 (1983) in a kinetic gelation simulation observed a qualitative 
difference between the equilibrium and the non-equilibrium cluster size distributions. 

From the construction of figure 2 it follows that in the subsequent stages of the 
growth process clusters consisting of s ( k )  =Zf=l  5' - '=  ( s k  - 1) /4-  5 k  sites are gener- 
ated, where k denotes the number of iterations completed. The number of clusters 
n s ( k j  consisting of s ( k )  sites is proportional to ( $ ) k .  In the random deposition model 
Monte Carlo simulations indicate that for large s values the expression n, - s-' applies. 
The exponent 7 in our system can be calculated from 

~ = - l n ( n s ~ k j / A s ( k ) ) / l n s ( k ) = - l n ( ( ~ ) k / 5 k ) / l n 5 k = 1 . 6 8 2 . .  . (3) 
where the cluster numbers ns(k)  have been normalised by the factor As(k)  - 5k  propor- 
tional to the differencz of two subsequent cluster sizes s( k ) ,  since in (3) & ( k j  is regarded 
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as the number of s ( k )  clusters in a given interval of the cluster sizes. The value 
T = 1.682. . , is in qualitative agreement with the simulation result T =  1.4 (RBcz and 
Vicsek 1983) and is definitely less than 2, which is the smallest value of T allowed in 
an equilibrium system. For S ( k )  we obtain 

k 

s ( k ) =  j = 1  s z ( j ) n s ( j l / t  j = 1  s ( j ) n s ( j , - 5 k *  

Writing S (  k )  in the form S (  k )  - N Y  (where the control parameter N -  ( $ ) k  is the 
number of sites in the clusters) we get for the exponent y 

y = In 5/(ln 5 - In 3) = 3.150 . . . . (4) 

Finally, we introduce an exponent denoted by (T in percolation theory and defined by 
the expression s, - where ss is the typical cluster size giving the main contribution 
to the singular sums such as S (  k). In our model s, - 5k since the cluster sizes diverge 
as a geometrical progression and the sums are always determined by the last term of 
the series. From here 

u = In N/ln s, = (In 5 -In 3)/1n 5 = 0.3 17 . . . . ( 5 )  

Assuming a scaling ansatz of the form n, - s - ' f ( s" /N)  for the cluster distribution in 
the random deposition model, RBcz and Vicsek (1983) obtain the following scaling 
laws for the exponents y, T and U :  

y = 1/u and 2-7=L+. ( 6 )  

Substitution of (3),  (4) and ( 5 )  into (6) results in identities, demonstrating the internal 
consistence of our fractal model and its relevance to the description of non-equilibrium 
cluster distribution. 

In conclusion, a regular construction of clusters using rules which simulate the 
competitive growth process present in the two-dimensional diffusion controlled deposi- 
tion model has been shown to result in a fractal and in a non-equilibrium cluster 
distribution with scaling properties. Due to the simple assumptions of the aggregation 
process a wide variety of competitive growth models is expected to exhibit analogous 
behaviour. 

The author thanks Z RBcz for useful discussions. 
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